Q.P. Code: 16CS517

Reg. No:	this fet	a kod 16	and bein		acrae em. 3	apply!
----------	----------	----------	----------	--	-------------	--------

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations December-2021 FORMAL LANGUAGES AND AUTOMATA THEORY

(Common to CSE & CSIT)

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 a Convert the following Mealy machine into its equivalent Moore machine.

L2 10M

Present State	I/P	=0	I/P=1		
	Next State	O/P	Next State	O/P	
→ A	С	0	В	0	
В	A	1	D	0	
С	В	1	A	1	
D	D	1	С	0	

b Show that (0*1*)* = (0+1)*.

L3 2M

OR

a Minimize the following finite automata.

L3

10M

b Define NFA. What are the differences between DFA & NFA.

L2 2M

UNIT-II

a Prove that the language $L = \{a^nb^nc^n \mid n \ge 1\}$ is not regular using pumping lemma.

L3 10M

b Prove R=Q+RP has unique solution, R=QP*.

L1 2M 4 a Explain about the Arden' theorem, for constructing the RE from a FA with L1 7M an example.

	b List out the identities of Regular expression.	L1	5M
5	a Remove the unit production from the grammar. $S \rightarrow AB, A \rightarrow E, B \rightarrow C, C \rightarrow D, D \rightarrow b, E \rightarrow a$	L3	6M
	b Remove ϵ productions from the grammar S \rightarrow ABaC, A \rightarrow BC, B \rightarrow b/ ϵ , C \rightarrow D/ ϵ , D \rightarrow d	L3	6M
	OR		
6	Write the procedure and Eliminate left recursion from the following Grammar	L2	8M
	$E \rightarrow E + T/T$		
	$T \rightarrow T^*F/F$		
	$F \rightarrow (E)/id$		
	b Explain Left recursion and Left factoring	L2	4M
	UNIT-IV		
7	a Construct an equivalent PDA for the following CFG S→aAB bBA A→bS a	L3	7M
	$B\rightarrow aS \mid b$		
	b Explain about the graphical notation of PDA. OR	L2	5M
8	Explain Deterministic Push down Automata with example? UNIT-V	L2	12M
9	a Explain the various types of Turing machine.	L3	10M
	b Describe linear bounded automaton.	L3	2M
4.0	OR		
10	a Construct a Turing machine that recognizes the language a ⁿ b ⁿ c ⁿ .	L3	8M
	b Write about Universal Turing machine.	L3	4M

*** END ***